Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diethyl 1,1'-ethane-1,2-diylbis(2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate)

Zhen-Feng Zhang, ${ }^{\text {a* }}$ Si-Qian Wang, ${ }^{\text {b }}$ Jian-Ping Li ${ }^{\text {a }}$ and Gui-Rong Qu ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and ${ }^{\mathbf{b}}$ Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Correspondence e-mail: zzf5188@sohu.com

Received 6 July 2007; accepted 21 July 2007

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.052 ; w R$ factor $=0.139$; data-to-parameter ratio $=14.3$.

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$, the two pyrrolinone rings are planar and adopt anti conformations. The molecule lies on an inversion centre. The molecules are linked into a threedimensional framework structure by three independent C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For related literature, see: Bernstein et al. (1995); Zhang et al. (2004, 2007).

Experimental

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=364.39$
Monoclinic, $P 2_{1} / n$
$a=4.5403$ (10) \AA
$b=12.418$ (3) \AA
$c=16.439$ (4) A
$\beta=91.812(3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997a)
$T_{\text {min }}=0.971, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
78 restraints
$w R\left(F^{2}\right)=0.139$
H -atom parameters constrained
$S=1.04$
1716 reflections
120 parameters

6085 measured reflections 1716 independent reflections 1164 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$
$\Delta \rho_{\max }=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	0.96	2.31	$2.966(4)$	125
$\mathrm{C} 8-\mathrm{H} 8 B \cdots 1^{\mathrm{i}}$	0.97	2.71	$3.429(3)$	131
C7-H7C ${ }^{\text {ii }}$	0.96	2.55	$3.417(3)$	150
C7-H7A $\cdots 1^{\text {iii }}$	0.96	2.71	$3.337(3)$	123
Symmetry codes: (i) $x-1, y, z ;$ (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2} ;$ (iii) $-x+\frac{5}{2}, y-\frac{1}{2},-z+\frac{3}{2}$				

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Physiochemical Analysis Measurement Institute of Chemistry, Luoyang Normal University. We also acknowledge the Initial Fund for Scientific Research of Henan Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2017).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Zhang, Z.-F., Jin, S., Shang, Z.-B., Huang, S.-P., Liu, B. \& Guo, J.-P. (2004). Acta Cryst. C60, o176-o177.
Zhang, Z.-F., Wang, D.-C., Wang, S.-Q. \& Qu, G.-R. (2007). Unpublished results.

supplementary materials

Acta Cryst. (2007). E63, o3865 [doi:10.1107/S1600536807035684]

Diethyl 1,1'-ethane-1,2-diylbis(2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate)

Z.-F. Zhang, S.-Q. Wang, J.-P. Li and G.-R. Qu

Comment

The reaction of ethylenediamine with ethyl acetoacetate yields dienamine,(I) (scheme 1), cyclization of which with glyoxal and thereafter rearrangement yields bicyclic pyrrolinone (II). We have reported the structure of the dienamine,(I) (Zhang et al., 2004). We have now prepared several novel ethylenedi(2-pyrrolin-5-one) derivatives (Zhang et al., 2007), but unfortunately, only the title compound, (II) has provided crystals suitable for single-crystal structure determination. We report here the molecular and supramolecular structure of the title compound, (II).

The structural unit in the title compound (Fig. 1) adopts a low-energy anti conformation with torsion angle N1—C4-C4 ${ }^{\mathrm{i}}-\mathrm{N} 1^{\mathrm{i}}$ [symmetry code: (i) $\left.1-x, 1-y, 1-z\right] 180.0(2)^{\circ}$. The anti-conformation is thought to result from a van der Waals repulsion effect between the two pyrrolinone rings. The pyrrolinone rings are perfectly planar, with a mean deviation of $0.006 \AA$. The dihedral angle between the planes of the two rings is 0°, indicating that the two rings are parallel to one another. Within the pyrrolinone rings, there is a clear distinction between single and double bonds. The lengths for $\mathrm{C} 2=\mathrm{C} 3$ and $\mathrm{C} 1=\mathrm{O} 1$ bonds $[1.349$ (3) and $1.211(3) \AA$, respectively] are shorter than the corresponding bonds found in the precursor (I) [1.370 (4) and 1.222 (4) \AA, respectively; Zhang et al., 2004]. Conversely, the $\mathrm{N} 1-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{C} 2$ bonds are longer [1.411 (3) and 1.459 (3) \AA versus 1.342 (4) and 1.439 (4) \AA, respectively]. It is also interestingly found that within pyrrolinone rings, the distance of $1.385 \AA$ for N1—C9 is shorter than that of $1.411 \AA$ for $\mathrm{N} 1-\mathrm{C} 3$ bond, indicating that as compared with $\mathrm{C} 3=\mathrm{C} 2$, the $\mathrm{C} 9=\mathrm{O} 3$ bond is in $\pi-\pi$ conjugation with the N 1 atom. The sum of the three angles around each of the N1, C3 and C2 atoms is $359.98(2)^{\circ}$, implying that the N6, C3 and C2 atoms take on $s p^{2}$ hybridization.

In the molecule (II), there are two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which, though not strong, contribute to the relatively stable co-planarity for the structural unit $\mathrm{O} 2 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 7$. This presumably sets the stage in turn for the interactions within the crystal lattice.

The molecules of compound (II) are linked by six independent $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) into a three-dimensional framework structure, whose formation is rather easily analysed in terms of two simple substructures, one of which is one-dimensional and the other is two-dimensional.

In the one-dimensional substructure, the methylene C 8 atom in the pyrrolinone ring acts as a hydrogen-bond donor, via H8B, to the acyl atoms, thus forming the centrosymmetric $R^{2}{ }_{2}(24)$ dimer (Bernstein et al., 1995) centred at $(0,1 / 2,1 / 2)$; details of hydrogen-bonding geometry has been given in Table 1. Propagation by translation of these two hydrogen bonds generates a $\mathrm{C}(4) \mathrm{C}(4)$ (Bernstein et al., 1995) hydrogen-bonded chains (column) along the a axis.

The column centred at $(0,1 / 2,1 / 2)$ associates further via two independent bifurcated donor hydrogen bonds and two bifurcated acceptor hydrogen bonds with nearby four columns centred at $(0,0,0),(0,1,0),(0,0,1)$ and $(0,1,1)$, respectively. These lateral interactions reinforce structures by adding hydrogen bonds and extending them forming a two-dimensional substructure. The methyl atom C7 acts as a hydrogen-bond donor, via atoms H7A and H7C, to O atoms forming a two-dimensional

supplementary materials

hydrogen-bonded substructure (details in Table 1). The combination of the one- and two-dimensional substructures suffices to generate the three-dimensional framework structure (Fig. 2).

Experimental

Into a three-necked round-bottomed flask equipped with a mechanical stirrer were introduced dienamine, (I), ($28.4 \mathrm{~g}, 0.1$ $\mathrm{mol})$, ethanol $(95 \%, 50 \mathrm{ml})$ and glyoxal ($18 \mathrm{~g}, 40 \%$). The mixture was then heated at about 333 K with stirring for 30 min under an inert atmosphere. Natural cooling of the reaction mixture overnight gave a crystalline product (yield: 18\%). which was recrystallized from ethyl acetate. Single crystals of (II) were obtained by cooling of the hot solution of the above product in ethyl acetate very slowly over one week. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.17\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), \delta 3.66(\mathrm{~s}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), \delta 3.23\left(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), \delta 2.40\left(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), \delta 1.27\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$.

Refinement

H atoms were placed in idealized positions and were allowed to ride on the respective parent atoms with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (carrier atom), where $x=1.2$ for $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$.

Figures

Fig. 1. A view of the molecule of (II); displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Part of the crystal structure of (II), showing the formation of two-dimensional substructure; H atoms not involved in the motifs have been omitted for clarity.

Fig. 3. The formation of the title compound.

Diethyl 1,1'-ethane-1,2-diylbis(2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$
$F_{000}=388$
$M_{r}=364.39$
Monoclinic, $P 2_{1} / n$
$D_{\mathrm{x}}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$

Hall symbol: -P 2yn
$a=4.5403$ (10) \AA
$b=12.418$ (3) \AA
$c=16.439(4) \AA$
$\beta=91.812(3)^{\circ}$
$V=926.4$ (4) \AA^{3}
$Z=2$

Data collection

Bruker SMART CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=291(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997a)
$T_{\text {min }}=0.971, T_{\text {max }}=0.988$
6085 measured reflections

Cell parameters from 1143 reflections
$\theta=2.5-20.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, colourless
$0.30 \times 0.15 \times 0.12 \mathrm{~mm}$

1716 independent reflections

1164 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\text {min }}=2.5^{\circ}$
$h=-5 \rightarrow 5$
$k=-15 \rightarrow 14$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.139$
$S=1.04$
1716 reflections
120 parameters

78 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0615 P)^{2}+0.2115 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O1	$1.1869(4)$	$0.81344(14)$	$0.73896(11)$	$0.0720(6)$
O2	$1.1711(4)$	$0.64213(13)$	$0.78091(9)$	$0.0626(5)$
O3	$0.3884(4)$	$0.74182(16)$	$0.49802(11)$	$0.0807(6)$
N1	$0.5743(4)$	$0.60518(15)$	$0.57889(11)$	$0.0524(5)$
C1	$1.0922(5)$	$0.72278(18)$	$0.73102(13)$	$0.0509(6)$
C2	$0.8829(5)$	$0.69234(17)$	$0.66586(12)$	$0.0472(5)$
C3	$0.7712(4)$	$0.59462(17)$	$0.64654(12)$	$0.0451(5)$
C4	$0.4149(5)$	$0.5203(2)$	$0.53604(14)$	$0.0590(6)$
H4A	0.2245	0.5473	0.5169	0.071^{*}
H4B	0.3813	0.4611	0.5731	0.071^{*}
C5	$1.3733(6)$	$0.6677(2)$	$0.84821(14)$	$0.0687(7)$
H5A	1.2941	0.7254	0.8808	0.082^{*}
H5B	1.5615	0.6908	0.8280	0.082^{*}
C6	$1.4108(8)$	$0.5687(3)$	$0.89787(18)$	$0.1009(11)$
H6A	1.2285	0.5517	0.9230	0.151^{*}
H6B	1.5615	0.5803	0.9392	0.151^{*}
H6C	1.4668	0.5101	0.8636	0.151^{*}
C7	$0.8173(6)$	$0.48586(17)$	$0.68252(15)$	$0.0613(7)$
H7A	0.9800	0.4881	0.7212	0.092^{*}
H7B	0.8593	0.4354	0.6402	0.092^{*}
H7C	0.6425	0.4639	0.7094	0.092^{*}
C8	$0.7540(5)$	$0.77494(18)$	$0.60915(14)$	$0.0566(6)$
H8A	0.9063	0.8096	0.5784	0.068^{*}
H8B	0.6477	0.8294	0.6387	0.068^{*}
C9	$0.5496(5)$	$0.7116(2)$	$0.55439(14)$	$0.0575(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0810(13)$	$0.0532(10)$	$0.0810(12)$	$-0.0135(9)$	$-0.0110(10)$	$-0.0072(9)$
O2	$0.0747(12)$	$0.0589(10)$	$0.0531(9)$	$-0.0057(8)$	$-0.0155(8)$	$-0.0015(8)$
O3	$0.0725(13)$	$0.1035(15)$	$0.0649(11)$	$0.0129(10)$	$-0.0145(10)$	$0.0175(10)$
N1	$0.0479(11)$	$0.0587(12)$	$0.0502(10)$	$-0.0034(9)$	$-0.0018(8)$	$-0.0048(9)$
C1	$0.0487(13)$	$0.0517(14)$	$0.0526(13)$	$0.0012(11)$	$0.0036(10)$	$-0.0060(11)$
C2	$0.0488(13)$	$0.0452(12)$	$0.0476(11)$	$-0.0003(10)$	$0.0020(10)$	$-0.0016(10)$
C3	$0.0407(12)$	$0.0518(13)$	$0.0427(11)$	$-0.0015(10)$	$0.0026(9)$	$-0.0025(10)$
C4	$0.0465(13)$	$0.0757(17)$	$0.0549(13)$	$-0.0113(12)$	$0.0001(10)$	$-0.0131(12)$
C5	$0.0692(17)$	$0.085(2)$	$0.0506(14)$	$-0.0030(14)$	$-0.0114(12)$	$-0.0105(13)$
C6	$0.138(3)$	$0.090(2)$	$0.0721(19)$	$0.016(2)$	$-0.0422(19)$	$-0.0024(17)$
C7	$0.0724(16)$	$0.0497(14)$	$0.0615(14)$	$-0.0048(12)$	$-0.0037(12)$	$0.0025(11)$
C8	$0.0581(15)$	$0.0505(13)$	$0.0610(14)$	$0.0040(11)$	$0.0015(12)$	$0.0022(11)$
C9	$0.0514(14)$	$0.0681(16)$	$0.0532(14)$	$0.0061(12)$	$0.0037(11)$	$0.0049(12)$

sup-4

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

O1-C1	1.211 (3)
O2-C1	1.336 (3)
O2-C5	1.450 (3)
O3-C9	1.221 (3)
N1-C9	1.385 (3)
N1-C3	1.411 (3)
N1-C4	1.449 (3)
C1-C2	1.459 (3)
C2-C3	1.349 (3)
C2-C8	1.493 (3)
C3-C7	1.487 (3)
$\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	1.521 (4)
C4-H4A	0.9700
C1-O2-C5	117.06 (18)
C9-N1-C3	111.19 (18)
C9-N1-C4	121.21 (19)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	127.58 (19)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	122.9 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.7 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	114.35 (19)
C3-C2-C1	129.6 (2)
C3-C2-C8	109.52 (19)
C1-C2-C8	120.90 (19)
C2-C3-N1	109.02 (18)
C2-C3-C7	132.5 (2)
N1-C3-C7	118.43 (18)
N1-C4-C4 ${ }^{\text {i }}$	111.2 (2)
N1-C4-H4A	109.4
$\mathrm{C} 4{ }^{\mathrm{i}}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4
N1-C4-H4B	109.4
C4i ${ }^{\text {i }}$ C4-H4B	109.4
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.0
O2-C5-C6	107.3 (2)
O2-C5-H5A	110.3
C6-C5-H5A	110.3
O2-C5-H5B	110.3

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O} 2$	0.96	2.31	$2.966(4)$	125
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.97	2.71	$3.429(3)$	131
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 1^{\text {iii }}$	0.96	2.55	$3.417(3)$	150
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.96	2.71	$3.337(3)$	123

supplementary materials

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (iv) $-x+5 / 2, y-1 / 2,-z+3 / 2$.

Fig. 1

Fig. 2

Fig. 3

